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Abstract

Purpose – The purpose of this article is to present a new split system model (SSM) that predicts the
reliability of complex systems with multiple preventive maintenance (PM) actions in the long term.

Design/methodology/approach – The SSM was developed using probability theory based on the
concept of separating repaired and unrepaired components within a system virtually when modelling
the reliability of the system after repairs. After theoretical analysis, a case study and Monte Carlo
simulation were used to evaluate the effectiveness of the newly developed model.

Findings – The model can be used to determine the remaining life of systems, to show the changes in
reliability with PM actions, and to quantify PM intervals after imperfect repairs.

Practical implications – SSM can be used to predict the reliability of complex systems with
multiple PM actions, and hence can be used to support asset PM decision making over the whole life of
the asset, such as scheduled PM times and spare parts requirements. An asset often has some
vulnerable components, i.e. where the lives of these components are much shorter than the rest of the
asset. In this case, PM is often conducted on these vulnerable components for maximising the useful
life of the asset. The specific formulae derived in this paper can be used to predict the reliability of the
asset for this scenario.

Originality/value – The proposed model uses a new concept of split systems to predict the changes
of reliability of complex systems with multiple PM actions. Asset managers will find this model to be a
useful tool in the optimisation of their asset PM strategies.
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1. Introduction
In modern asset management, accurate predictability of the reliability of complex
repairable systems is desirable because most physical systems in industries are
repairable. A repairable system is usually defined as one that can be repaired to
recover its functions after each failure rather than be discarded (Crow, 1974). In this
paper, “failure” means that the component fails to meet its performance requirement.
This “failure” will naturally lead to a need for maintenance. When “repair” is
mentioned, it usually includes “replacement”. It is important to predict the reliability of
complex repairable systems accurately, especially during long periods of operation. A
company can plan its production with optimal level of maintenance staffing, inventory
and budget according to the prediction of remaining useful life. With increasing
complexity of machines and competitive industrial pressure, the need to understand
changes in the reliability of a complex repairable system after repairs becomes
pressing.

Currently, the most common techniques used to model reliability prediction of
repairable systems are based on stochastic or statistical analysis, including renewal
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process models, Markov chain (process) (Bloch-Mercier, 2001, 2002; Bruns, 2002; Juneja
and Schahabuddin, 2001; Marquez and Heguedas, 2002), Poisson point process
(Hoyland and Rausand, 1994; Van Noortwijk et al., 1995; Saldanha et al., 2001;
Weckman et al., 2001), Bayesian method (Van Noortwijk et al., 1995; Percy, 2002; Percy
and Kobbacy, 2000; Rosqvist, 2000; Sheu et al., 2001), proportional hazard model (PHM)
(Cox and Oakes, 1984; Jardine, 1973; Jardine et al., 1997), and combinations of these
models (Guo and Love, 1992; Landers et al., 2001). These different models address
reliability prediction of a repairable system using different approaches and have been
applied in different scenarios. However, the following two major deficiencies have
affected the effectiveness of these existing models. The first deficiency is that the
different states of repairable systems after multiple repairs have not been modelled
comprehensively. A common approach is to assume that a repairable system after
repairs becomes “as good as new” (Bloch-Mercier, 2002). The second deficiency is that
existing models often treat a repairable system as a “black box”, without considering
the individual contributions of different components to the reliability of this system.
These two deficiencies will be further analysed in section 2.

The characteristics of the reliability of a system often changes after repairs,
rendering difficulties in the prediction of the reliability of complex repairable systems,
especially when the prediction covers a number of failures and repairs during an
asset’s life time. In this paper, a split system model (SSM) is developed to address this
issue and to attempt to overcome the two deficiencies discussed earlier.

The rest part of this paper is organised as follows. In section 2, the two deficiencies
in the existing models are identified and analysed through an extensive literature
review and a case study. Section 3 consists of four subsections. In this section, the
concepts of SSM and the assumptions for SSM are introduced. The formula for the
reliability prediction of repairable systems under the condition that always the same
single component is repaired in all PM actions are derived and two basic applications
aspects of SSM are presented. In section 4, the developed model is evaluated using a
case study and this is followed by a simulation experiment in section 5. Conclusions are
given in section 6.

2. Model deficiencies
2.1 Assumptions for systems after repairs
Existing reliability prediction models often assume that a repairable system after
repairs becomes “as good as new” (Armstrong, 2002; Bloch-Mercier, 2002; Weckman
et al., 2001), or a similar assumption such that a system after repairs evolves in time
according to the same Markovian process as from the beginning (Bloch-Mercier, 2001,
2002). Another common assumption used in existing models is that a system after
repairs is “as bad as old” (Hoyland and Rausand, 1994). These assumptions are
unrealistic in a considerable number of cases. Often a system after a repair is not as
good as new, neither as bad as old leading to the concept of imperfect repair. To date,
effective modelling techniques dealing with the reliability prediction of a system with
multiple imperfect repairs are still unavailable (Guo and Love, 1992) although some
researchers have noticed the influence of imperfect repairs on the reliability of a system
(Cox and Oakes, 1984; Kobayashi, 2002; Marquez and Heguedas, 2002; Wang, 2002).
Most of existing models are only applied to predict and optimise the next repair
activity (Makis and Jardine, 1992; Stavropoulos and Fassois, 2000). The applications of
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these models are limited and their accuracy of prediction is doubtful if the effects of
repairs are not considered. For example, existing non-homogeneous poisson process
(NHPP) based models (Cox and Oakes, 1984; Crow, 1974) assume that the number of
failures does not affect failure probability and repairs do not change the reliability of a
system (Guo and Love, 1992). These models are only suitable for “minimum repair”
activities but not general repairs.

Some models consider the influence of imperfect repairs on the reliability of a
system, but are not very applicable due to the assumptions used to develop these
models. For example, to describe deterioration of reliability of repairable systems
after repairs, Artana and Ishida (2002) applied a decreasing percentage (,1) to the
original reliability index. Monga et al. (1997) assumed the reliability of a system
decreased proportionally with repair times and introduced a scale parameter called
failure rate deterioration factor. Later, Monga and Zuo (2001) introduced another time
variable parameter to describe the different start points of the hazard function of a
system after different repairs. Guo and Love (1992) introduced a scalar parameter to
reflect the improvement state of a system after repairs similar to Mona’s approach.
Their model was based on the non-homogeneous Poissonian framework with a
proportional intensities assumption. This model regarded the form and parameters of
the intensity function of a repairable system as unalterable. In these models, all
parameters or factors employed to describe the changes of the reliability function of a
system after repairs were normally estimated by maintenance engineers (or users).
For complicated systems, estimation of these parameters or factors is difficult, if not
impossible, even for experienced personnel. In addition, the assumption that
reliability of a system will deteriorate after repairs is not always true. Sometimes the
reliability of a repairable system after repair can be better than its original reliability.
See subsection 3.2.

2.2 The “black box” approach
A repairable system is often treated as a “black box” in existing models. These models
often take the entire system into account and do not analyse the reliability of repairable
systems at the component level. As a result, these models lose some important
information. The following Nelson-Aalen plot can be used to illustrate this argument.
The Nelson-Aalen plot shows the changes of the number of failures of a system with its
operational time (see Figure 1). The data presented in Figure 1 are the failure times of a

Figure 1.
Number of failures N(t) of
a pump system versus its

age
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pump system over nearly ten years. From this figure, it can be seen that the rate of
occurrence of failures (ROCOF) of the pump system can be approximated as a constant.
However, the reliability changes of the system between two failures cannot be
identified from the figure.

The determination of a suitable model to analyse these data is difficult if the pump
system is treated as a “black box”, because some failure properties can be identified
only at the component level. For example, the historical maintenance record of the
pump system showed that the fifth failure and the seventh failure in Figure 1 have the
same failure modes. Further analysis indicated that these two failures were related
because they shared the same root cause. In this case, the assumption of independent,
identical distribution (IID) adopted by the homogeneous Poisson process (HPP) model
is not valid. In addition, many of the repairs for these failures were not minimal repairs
and this indicates that the NHPP model is not suitable.

3. Split system model (SSM)
3.1 Concepts of SSM and assumptions
The above analysis demonstrated that failure and repair information at the component
level can often assist in the understanding of the properties of the failure of systems
and hence improve the maintenance outcome of these systems. The information at the
component level should be considered when the reliability of a system is being
modelled. The basic concept of SSM is to separate repaired and unrepaired components
within a system virtually when modelling the reliability of the system after repairs.
This procedure assists in analysing reliability at the component instead of the system
level and comes from the fact that generally when a complex system fails, only some of
components fail and need repair. In the following analysis, the following assumptions
are made:

. The failures of the repaired components are independent of unrepaired
components. This assumption means that when a component is repaired, the
failure distribution of the unrepaired part of a system (subsystem) does not
change, and the conditions of the subsystem do not affect the reliability
characteristics of repaired components.

. The reliability function of a new repairable system is known. The reliability
functions of components after repairs are also known.

. The topology of a repairable system is known.

According to the above assumptions, when a system is repaired, only the reliability of
the repaired component changes. The reliability of the remainder of the system just
before and after this repair does not change.

In addition, the repair time is ignored in the following analysis because this paper
focuses on the reliability prediction of a system during its operational period and does
not investigate the changes of the reliability of a system during repairs. However, the
effects of repair outcomes on reliability will be considered in this study.

This paper focuses on the reliability prediction of a complex system with multiple
PM actions over multiple PM intervals. The lead time for these PM actions is a
deterministic variable. In this paper, the SSM is developed based on a simple scenario
where always the same single component is repaired in all PM actions. The model
based on this scenario can be applied to industrial situations, although in this study,
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the scenario is used to demonstrate the basic concepts and procedures for SSM. An
asset often has some vulnerable components, i.e. where the lives of these components
are much shorter than the rest of the asset. In this case, PM is often conducted on these
vulnerable components for maximising the useful life of the asset. Some practical
examples include the preventive maintenance of bulbs in lighting systems, spark plugs
in engines, and pads in automotive braking systems that are considered to be weak
links in these systems – the same single component is repaired. When modelling the
reliability of such a system, the original system can be divided into two parts virtually.
“Part 1” is the repaired component and “Part sub” is the remainder of the system,
which is often referred to as the subsystem. Both series and parallel systems are
considered in this paper.

3.2 Series system
A series system is shown in Figure 2, where R1ðtÞai , RsubðtÞai and RsðtÞai are the
reliability functions of repaired component 1 (part 1), subsystem (part sub) and system
after the ith repair respectively. In this paper, the subscript ai is used to stand for “after
the ith repair”. Subscript a0 stands for no repair. Parameter t is a relative time scale
(refer to Figure 3).

The situation of imperfect repairs is described in Figure 3. Two time coordinates are
used in the modelling:

(1) Absolute time scale t: from 0 to infinite.

(2) Relative time scale t: from 0 to Dti (i ¼ 1, 2, . . ., n).

In Figure 3, R0 is the required minimum reliability for the system. Parameter Dti (i ¼ 1,
2, . . ., n) is the interval between two PM actions. Parameter ti is the ith PM time and also
the start time for a system to run again after the ith repair. Therefore:

t ¼
Xn
i¼1

Dti þ t ð1Þ

Figure 2.
Series system

Figure 3.
Changes to the reliability

of an imperfectly repaired
system

Prediction of
system reliability

115



www.manaraa.com

Initially, the reliability function of a system can be expressed as:

RsðtÞa0 ¼ R1ðtÞa0RsubðtÞa0 ð2Þ

At time t1, the reliability of the system falls to the required minimum level R0 of
reliability, and component 1 is repaired so that:

R1ð0Þa1 . R1ðt1Þa0 ð3Þ

Hence, after the first repair, the reliability of the system becomes:

RsðtÞa1 ¼
R1ðtÞa1Rsðtþ t1Þa0

R1ðtþ t1Þa0

ð4Þ

The following equation holds because reliability decreases monotonously with the
increase of operational time:

Rsubðtþ t1Þa0 ¼
Rsðtþ t1Þa0

R1ðtþ t1Þa0

, RsubðtÞa0 ¼
RsðtÞa0

R1ðtÞa0

ð5Þ

If R1ðtÞa1 ¼ R1ðtþ t1Þa0; then RsðtÞa1 ¼ Rsðtþ t1Þa0

This indicates that the system is repaired as bad as old.
If component 1 is repaired or replaced by an identical one:

R1ðtþ Dt1Þa0 , R1ðtÞa1 # R1ðtÞa0

In this case, equation (4) represents the situation that systems are repaired imperfectly
because in this case:

Rsðtþ Dt1Þa0 , RsðtÞa1 , RsðtÞa0

If the reliability of component 1 after the repair R1ðtÞa1 is better than its initial
reliability R1ðtÞa0, so that:

RsðtÞa1 $ RsðtÞa0

Equation (4) then represents the case where the state of a system after repairs is
improved to be as good as new, or even better than original new one. As a result,
equation (4) can describe different possible states of a system after repairs.

The reliability function of system after the nth repair can be derived as:

RsðtÞan ¼

R1ðtÞanRsðtþ
Xn
i¼1

DtiÞa0

R1ðtþ
Xn
i¼1

DtiÞa0

ð6Þ
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Equation (6) can be rewritten in the following form using the absolute time scale:

RsðtÞ ¼

R1ðt 2
Xn
i¼1

DtiÞanRsðtÞa0

R1ðtÞa0

; t .
Xn
i¼1

Dti

 !
ð7Þ

The function RsðtÞ indicates the reliability of a system after the nth PM interval.
Obviously, component 1 should not be repaired any more if the reliability of the

system after this repair cannot be recovered to above the required minimum reliability
level, i.e.:

Rsð0Þan # R0

or

R1ð0ÞanRsð
Xn
i¼1

DtiÞa0

R1ð
Xn
i¼1

DtiÞa0

# R0 ð8Þ

3.3 Parallel system
The schema of a parallel system is shown in Figure 4.

The relationship among reliability functions R1ðtÞai, RsubðtÞai and RsðtÞai is given by:

RsðtÞai ¼ R1ðtÞai þ RsubðtÞai 2 R1ðtÞaiRsubðtÞai; ði ¼ 1; 2; . . . ; nÞ ð9Þ

To simplify mathematical operations, let F1ðtÞai , FsubðtÞai and FsðtÞai be corresponding
failure distribution functions of component 1, subsystem and system respectively.
According to reliability theory, equation (9) becomes:

FsðtÞai ¼ F1ðtÞaiFsubðtÞai; ði ¼ 1; 2; . . . ; nÞ ð10Þ

Based on the same derivation procedure as in subsection 3.2, the following results can be
obtained (see Figure 5):

FsðtÞa1 ¼
F1ðtÞa1Fsðtþ t1Þa0

F1ðtþ t1Þa0

ð11Þ

Figure 4.
Parallel system
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FsðtÞan ¼

F1ðtÞanFsðtþ
Xn
i¼1

DtiÞa0

F1ðtþ
Xn
i¼1

DtiÞa0

ð12Þ

FsðtÞ ¼

F1ðt 2
Xn
i¼1

DtiÞanFsðtÞa0

F1ðtÞa0

; t .
Xn
i¼1

Dti

 !
ð13Þ

where, F0 is the control level of the accumulative failure probability of a system.
Functions FsðtÞa0, FsðtÞa1, and FsðtÞan are the failure distribution functions of the
original system, the system after the first repair, and after the nth repair
respectively. Function FsðtÞ is the failure distribution function of the system with
multiple PM intervals, and presented in the absolute time scale. Functions F1ðtÞa0,
F1ðtÞa1 and F1ðtÞan represent the failure distribution functions of the original
component 1, and component 1 after the first repair and after the nth repair,
respectively.

Equation (13) can be rewritten in the term of reliability function as follows:

RsðtÞ ¼ 1 2

ð1 2 R1ðt 2
Xn
i¼1

DtiÞanÞð1 2 RsðtÞa0Þ

1 2 R1ðtÞa0

; t .
Xn
i¼1

Dti

 !
ð14Þ

Generally, F1ð0Þai , F1ðt1Þai21 and the failure distribution function of the subsystem,
FsubðtÞ increases monotonously with the increase of operational time, so:

FsðtiÞai21 . Fsð0Þai . Fsð0Þai21; ði ¼ 1; 2; . . . ; nÞ ð15Þ

Equation (15) indicates that a system is repaired imperfectly. It is noted that equations
(12), (13) or (14) can also represent different states of a system after repairs due to the
similar reasons mentioned in subsection 3.2.

Figure 5.
Changes of the failure
distribution function of an
imperfectly repaired
system
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3.4 SSM applications
The model developed in this study can be used for the following applications:

. To improve the accuracy of estimating reliability of a repairable system using
historical failure data. Historical failure data (failure times) of a system can be used
to estimate the reliability of this system using statistical methods if these failures
are IID and the system becomes as good as new after each repair. Life data from
industry hardly meet this constraint because of imperfect repairs and related
failures as presented in Figure 1. If these industrial failure data are directly used to
estimate the failure distribution function of a system, the reliability estimation will
most likely be in error. SSM can remove these constraints and this is best illustrated
by an example. A system has an imperfect repair after failure time tn-1 and then
fails at time tn. On average, the failure interval Dtn ¼ tn 2 tn21 is assumed to be
shorter than if this system is repaired as good as new (the mean time between two
failures when this system is assumed to be repaired as good as new is termed as
“should-be-failure-interval”). The difference between “should-be-failure-interval”
and real failure interval can be calculated using SSM since the reliability function of
the system between time tn-1 and tn can be estimated using equation (9). Therefore
the “should-be-failure-time” and its variation can be found and used for statistical
analysis. More sophisticated techniques of the application of SSM to improve the
accuracy when estimating the reliability of a repairable system using historical
failure data are currently being developed by the authors.

. To support preventive maintenance decision making for a repairable system
during its lifetime. While the most of prediction models focuses on the next
failure and/or next PM action only, the multiple PM lead times of a repairable
system over its life span can be predicted using SSM. Therefore, the optimal level
of maintenance staffing, inventory and budgets can be planned in advance. The
capability of SSM to support preventive maintenance decision making for a
repairable system over its lifetime is demonstrated by the following case study in
section 4.

4. A case study
A reparable mechanical system is the same as described in subsection 3.2.
Preventive maintenance is used to reduce the failure probability of the system.
Whenever the reliability of the system falls to the required minimum reliability level
R0, a PM action is conducted. When a PM action is taken, component 1 is always
replaced by an identical new one. The reliability functions of the original system
and component 1 are:

RsðtÞa0 ¼ exp½2lst2 ðl1tÞ
2� ð16Þ

and

R1ðtÞa0 ¼ exp½2ðl1tÞ
2� ð17Þ

The original reliability function of subsystem can be found according to reliability
theory:

RsubðtÞa0 ¼ expð2lstÞ ð18Þ
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The first PM lead time t1 ¼ Dt1 is given by:

t1 ¼ Dt1 ¼
2ls þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
s 2 4l2

1 lnR0

q
2l2

1

; ð1 . R0 . 0Þ ð19Þ

Using equation (6), one has:

RsðtÞa1 ¼
exp½2ðl1tÞ

2� exp½2lsðtþ Dt1Þ2 l2
1ðtþ Dt1Þ

2�

exp½2l2
1ðtþ Dt1Þ

2�

¼ RsðtÞa0 expð2lsDt1Þ ð20Þ

When the system is at its first PM action, Rsðt ¼ t1Þa0 ¼ R0. The reliability of the
system just after this PM action is:

Rsð0Þa1 ¼ expð2lsDt1Þ ¼ R0 expðl1Dt1Þ
2 . R0 ð21Þ

The reliability of the system after repair increases but is not restored to 1 (the initial
reliability level of the system) because 1 . expð2lsDt1Þ . 0.

The interval between the first PM action and the second PM action is found by
using equation (20):

Dt2 ¼
2ls þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
s 2 4l2

1ð lnR0 þ lsDt1Þ

q
2l2

1

ð22Þ

Obviously, Dt2 , Dt1 due to Dt1 and ls are both greater than zero, that is, the interval
time between two PM actions becomes shorter after repairs if the same minimum
reliability level needs to be maintained. The reliability function of the repairable
system after the nth PM action is given by:

RsðtÞan ¼ RsðtÞa0 expð2ls
Xn21

i¼1

DtiÞ ð23Þ

If the absolute time scale is applied, equation (23) can be rewritten as:

RsðtÞ ¼ RsðtÞa0 exp 2l2
1t
Xn
i¼1

Dti 2 l1

Xn
i¼1

DtiÞ

 !2

þlsDtn

2
4

3
5; t .

Xn
i¼1

Dti

 !
ð24Þ

If component 1 ceases to be produced, how many spare parts of component 1 should be
kept for the life span of the system if only PM is considered? The answer can be found
using the following criterion. The interval time between two PM actions must be longer
than required minimum operational time tp, that is:

Dtn $ tp ð25Þ
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The interval time between two PM actions is:

Dtn ¼

2ls þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
s 2 4l2

1ð lnR0 þ ls
Xn21

i¼1

Dti

vuut Þ

2l2
1

ð26Þ

Therefore, the maximum number N of component 1 to be stored can be estimated by
solving the following inequality:

2ls þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
s 2 4l2

1 lnR0 þ ls
Xn21

i¼1

Dti

 !vuut
2l2

1

$ tp ð27Þ

Inequality equation (27) needs to be solved recurrently and numerically. An example is
given as follows.

For this mechanical system, l1 ¼ 0:0008 (1/day) and ls ¼ 0:00011 (1/day). The
required minimum reliability level R0 is 0.9. Table I shows the relationship between the
number of spare parts and the required minimum operational time tp.

Since the maintenance strategy in this case study is assumed to replace component
1 in all PM actions. The subsystem will keep deteriorating over its operational time.
Finally, the deterioration of the subsystem will become so bad that the reliability of the
system can no longer be maintained to above the required minimum level R0 by
replacing component 1 only. In this situation, the expected life T of this repairable
system can be estimated according to the following formula:

T ¼
Xnþ1

i¼1

Dti ð28Þ

If the required minimum operational time is 72 days, the expected life of the system is
880.3 days, which is more than 2.5 times of the age when the reliability of system first
falls to the control level of reliability R0 (328.8 days).

5. Simulation test
The SSM was evaluated using a series of Monte Carlo simulation experiments. Figure 6
presents an example result of such simulation experiments and the corresponding
analytical result.

From this figure, it can be concluded that SSM identifies the same number of
failures, consistent with the simulation results. The characteristics of the failure
distribution of the system predicted by SSM are very close to the results of the

tp (days) 30 50 72 100 120 150 180

N 5 5 4 4 3 3 3

Table I.
The relationship between
the spare parts N and the

required minimum
operational time tp
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simulation experiment. The maximum relative error of the reliability estimated using
SSM to the simulation results was less than 2.54 per cent.

Another point of comparison is the times when the reliability of the system reaches
the minimum required level R0 after repairs. If that point is tSSM and tSIM estimated by
SSM and the simulation experiments respectively, then the maximum absolute relative
error of tSSM to tSIM was 6.06 per cent (see Table II), which is acceptable. This result
confirms that SSM has a commendable accuracy of prediction.

6. Conclusion
SSM as proposed, can predict the reliability of a repairable system at the component
level. Compared with existing models, SSM has the following advantages:

. It is able to explicitly predict the reliability of a repairable system with multiple
PM actions over a long term. It can be used to decide when the system is
unworthy of further PM from the reliability point of view (refer to equation (8)),
whereas most of the existing models are only effective in predicting the next
repair activity. However, a repairable system often experiences several failures
and PM actions over its operating life.

. It is able to deal with the individual contributions of different parts in a system
and the influence of system structures on the reliability of a repairable system.
This ability provides an understanding of the impact of repairs on the reliability
of a system in more depth compared to the “black box” approach commonly
used. As a result, SSM can be used for evaluating the reliability of a system at the
component level.

. It is able to model different states of a system after repairs such as “as good as new”,
“imperfect repair”, “improvement repair” (i.e. better than new) and “as bad as old”.

. It is not restricted by the forms of failure distribution.

Figure 6.
An example of simulation
experimental results: (a)
the changes of the
reliability of a system over
its whole life cycle; (b) the
failure times of the
subsystem

tSSM (days) 328.8 582.7 764.8 875.8
tSIM (days) 310 584.2 785.6 905.8
Error (%) 6.06 20.26 22.65 23.31

Table II.
The times when the
reliability of the system
dropped to the minimum
required reliability level
after repairs
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SSM can improve the accuracy of estimating the reliability function of a repairable
system using historical failure data. It can be extended to support preventive
maintenance decision making for a repairable system over its whole life. As such, the
expected life of a repairable system with multiple PM actions over multiple intervals
can be estimated using SSM. Also, the available PM times of a system and the spare
parts requirement can be predicted.

This paper reports on work concerning the scenario where a system has been
preventively maintained for n times, i.e. the conditional probability of survival of a
system with PM actions over multiple PM intervals. The authors have also conducted
work on the cumulative effect of failure probability of repaired components over time.
These results will be published in due course.
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